Targeting the ABCG2-overexpressing multidrug resistant (MDR) cancer cells by PPARγ agonists.
نویسندگان
چکیده
BACKGROUND AND PURPOSE Multidrug resistance (MDR), usually mediated by overexpression of efflux transporters such as P-gp, ABCG2 and/or MRP1, remains a major obstacle hindering successful cancer chemotherapy. There has been great interest in the development of inhibitors towards these transporters to circumvent resistance. However, since the inhibition of transporter is not specific to cancer cells, a decrease in the cytotoxic drug dosing may be needed to prevent excess toxicity, thus undermining the potential benefit brought about by a drug efflux inhibitor. The design of potent MDR modulators specific towards resistant cancer cells and devoid of drug-drug interactions will be needed to effect MDR reversal. EXPERIMENTAL APPROACH Recent evidence suggests that the PTEN/PI3K/Akt pathway may be exploited to alter ABCG2 subcellular localization, thereby circumventing MDR. Three PPARγ agonists (telmisartan, pioglitazone and rosiglitazone) that have been used in the clinics were tested for their effect on the PTEN/PI3K/Akt pathway and possible reversal of ABCG2-mediated drug resistance. KEY RESULTS The PPARγ agonists were found to be weak ABCG2 inhibitors by drug efflux assay. They were also shown to elevate the reduced PTEN expression in a resistant and ABCG2-overexpressing cell model, which inhibit the PI3K-Akt pathway and lead to the relocalization of ABCG2 from the plasma membrane to the cytoplasma, thus apparently circumventing the ABCG2-mediated MDR. CONCLUSIONS AND IMPLICATIONS Since this PPARγ/PTEN/PI3K/Akt pathway regulating ABCG2 is only functional in drug-resistant cancer cells with PTEN loss, the PPARγ agonists identified may represent promising agents targeting resistant cells for MDR reversal.
منابع مشابه
Axitinib targeted cancer stemlike cells to enhance efficacy of chemotherapeutic drugs via inhibiting the drug transport function of ABCG2.
Stemlike cells have been isolated by their ability to efflux Hoechst 33342 dye and are called the side population (SP). We evaluated the effect of axitinib on targeting cancer stemlike cells and enhancing the efficacy of chemotherapeutical agents. We found that axitinib enhanced the cytotoxicity of topotecan and mitoxantrone in SP cells sorted from human lung cancer A549 cells and increased cel...
متن کاملA Novel Two Mode-Acting Inhibitor of ABCG2-Mediated Multidrug Transport and Resistance in Cancer Chemotherapy
BACKGROUND Multidrug resistance (MDR) is a major problem in successful treatment of cancers. Human ABCG2, a member of the ATP-binding cassette transporter superfamily, plays a key role in MDR and an important role in protecting cancer stem cells. Knockout of ABCG2 had no apparent adverse effect on the mice. Thus, ABCG2 is an ideal target for development of chemo-sensitizing agents for better tr...
متن کاملNP-1250, an ABCG2 inhibitor, induces apoptotic cell death in mitoxantrone-resistant breast carcinoma MCF7 cells via a caspase-independent pathway.
Chemoresistance is one of the main obstacles to successful cancer therapy and is frequently associated with multidrug resistance (MDR). One of the most studied mechanisms of MDR is the high expression of ATP-binding cassette (ABC) transporters. Here, we demonstrated that NP-1250, an ABCG2 inhibitor, induced apoptotic cell death in ABCG2-overexpres...
متن کاملCelecoxib Up Regulates the Expression of Drug Efflux Transporter ABCG2 in Breast Cancer Cell Lines
Elevated expression of the drug efflux transporter ABCG2 seems to correlate with multidrug resistance of cancer cells. Specific COX-2 inhibitor celecoxib has been shown to enhance the sensitivity of cancer cells to anticancer drugs. To clarify whether ABCG2 inhibition is involved in the sensitizing effect of celecoxib, we investigated whether the expression of ABCG2 in breast cancer cell lines ...
متن کاملAST1306, a potent EGFR inhibitor, antagonizes ATP-binding cassette subfamily G member 2-mediated multidrug resistance.
AST1306, an inhibitor of EGFR and ErbB2, is currently in phase I of clinical trials. We evaluated the effect of AST306 on the reversal of multidrug resistance (MDR) induced by ATP-binding cassette (ABC) transporters. We found that AST1306 significantly sensitized the ABC subfamily G member 2 (ABCG2)-overexpressing cells to ABCG2 substrate chemotherapeutics. AST1306 significantly increased intra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- British journal of pharmacology
دوره 170 5 شماره
صفحات -
تاریخ انتشار 2013